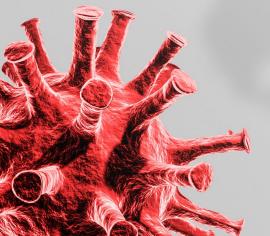
Disclaimer

- The views expressed in the following presentation are those of the individual author and do not necessarily reflect the views of Sanofi General Medicine.
- Sanofi General Medicine does not recommend the use of its products in any manner inconsistent with that described in the full prescribing information available in your country.
- Before prescribing the product always refer to the prescribing information and medical guidance in your country.
- The information shared during this webinar is provided for medical and scientific purposes and intended for healthcare professionals only.

Thrombosis and COVID-19: inpatient management


David Jiménez, MD, PhD, FCCP, FERS

Ramón y Cajal Hospital, IRYCIS

Universidad de Alcalá

CIBER Enfermedades Respiratorias (CIBERES)

Madrid, Spain

Disclosures

Research support	Daiichi Sankyo, Sanofi	
Employee	No relevant conflicts of interest to declare	
Consultant and/or honoraria	Bayer, Boehringer Ingelheim, BMS, Daiichi Sankyo, Leo Pharma, Pfizer, ROVI, Sanofi	
Stockholder	No relevant conflicts of interest to declare	
Speaker bureau	Bayer, BMS, Sanofi	
Scientific advisory board	See consultant	

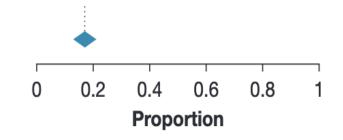
The problem

 What is the optimal thromboprophylaxis regimen for hospitalised patients with COVID-19?

• Is (full-dose) anticoagulation a treatment for COVID-19?

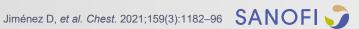
In hospitalised patients with coronavirus disease in 2019

Incidence of VTE


CI, confidence interval; VTE, venous thromboembolism

Total (95% CI)

18,093 100%


0.170 [0.134-0.209]

Heterogeneity: $Tau^2 = 0.0261; \chi^2 = 1,733.93, df = 46 (p=0); I^2 = 97\%$

In hospitalised patients with coronavirus disease in 2019

Group	Incidence (%)	Difference
VTE		
Screening	33.1	<0.0001
Clinical diagnosis	9.8	
Ward	7.1	<0.0001
ICU	27.9	
Prospective	25.5	<0.0001
Retrospective	12.4	

• In hospitalised patients with coronavirus disease in 2019

Incidence of bleeding


CI, confidence interval; VTE, venous thromboembolism

Total (95% CI)

1,411 100%

0.078 [0.026–0.153]

Heterogeneity: $Tau^2 = 0.0168; \chi^2 = 76.73, df = 4 (p<0.01); I^2 = 95\%$

In hospitalised patients with coronavirus disease in 2019

BLEEDING

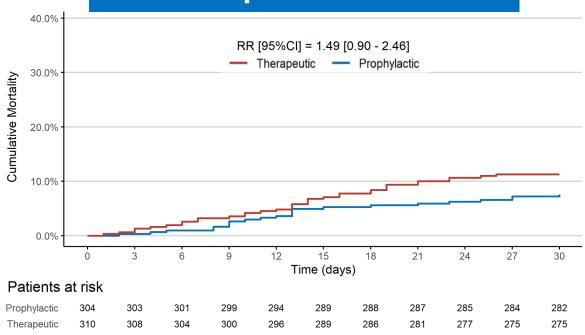
Prospective	2.7	<0.001
Retrospective	9.4	
Standard dose prophylaxis	4.7	<0.001
Intermediate dose or full anticoagulation	21.4	

Trial designs

	INSPIRATION ¹	Multiplatform trials ²	ACTION ³
Population	Critically ill (562)	Non-critically ill (2,219) Critically ill (1,074)	Non-critically ill (575) Critically ill (39)
Intervention	Intermediate-dose thromboprophylaxis (LMWH)	Therapeutic anticoagulation (LMWH)	Therapeutic anticoagulation (rivaroxaban for stable and LMWH for unstable patients)
Comparator	Low-dose thromboprophylaxis	Usual care pharmacological thromboprophylaxis Low-dose: 72% Intermediate-dose: 27% Subtherapeutic: 1%	Standard of care with prophylactic dose anticoagulation
Primary outcome	Composite of adjudicated acute VTE, arterial thrombosis, undergoing ECMO or all-cause mortality	Survival to hospital discharge and days free of organ support	Hierarchical analysis of mortality, duration of hospitalisation and duration of oxygen use

INSPIRATION trial – mITT analyses (N=562)

	Intermediate-dose thromboprophylaxis n=276	Standard-dose thromboprophylaxis n=286
Primary outcome (%) Composite of adjudicated acute VTE, arterial thrombosis, undergoing extracorporeal membrane oxygenation, or all-cause mortality	45.7	44.1
VTE (%)	3.3	3.5
Major bleeding (%)	2.5	1.4
Severe thrombocytopenia (n)	6	0


ATTACC, REMAP-CAP and ACTIV-4a mpRCT

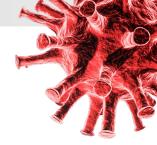
State and D-dimer strata	Proportional odds ratio Median (95% Crl)	Trial statistical conclusion
Severe state	0.76 (0.60–0.97)	Futility [Probability of OR>1.2 < 0.001]

ACTION trial

Unstable patients: 23 vs 16

Clinical practice guidelines

7. In critically ill patients with COVID-19, we suggest current standard dose anticoagulant thromboprophylaxis over intermediate (LMWH BID or increased weight-based dosing) or full treatment dosing, per existing guidelines.



ATTACC, REMAP-CAP and ACTIV-4a mpRCT

State and D-dimer strata	Proportional odds ratio Median (95% Crl)	Trial statistical conclusion
Moderate state, low D-dimer	1.22 (0.93–1.57)	Superiority [Probability of OR>1= 0.929]
Moderate state, high D-dimer	1.31 (1.00–1.76)	Superiority [Probability of OR>1= 0.973]
Moderate state, missing D-dimer	1.32 (1.00–1.86)	Superiority [Probability of OR>1= 0.973]

ATTACC, REMAP-CAP and ACTIV-4a mpRCT: mortality

Therapeutic	Usual care venous
anticoagulation	thromboprophylaxis
N=1,171	N=1,048
86 (7.3%)	86 (8.2%)

Relative risk reduction 11%

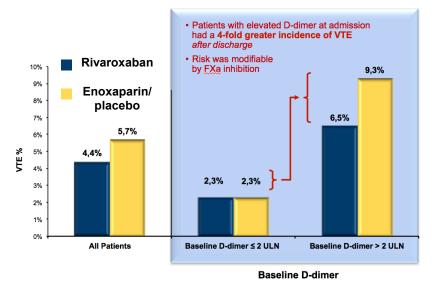
ACTION trial

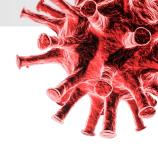
Stable patients: 288 vs 288

	Therapeutic N=310	Prophylactic N=304
Composite thromboembolic outcome	23 (7.4%)	30 (9.9%)
ISTH major bleeding or clinically relevant non-major bleeding	26 (8.4%)	7 (2.3%)

Anticoagulation as a treatment for COVID-19

• We need to see the data in a final, peer-reviewed publication


More questions than answers


We also need confirmatory data

More questions than answers

- No benefit for the most severe patients
- Benefit for moderate patients with low D-dimer

ATTACC, REMAP-CAP and ACTIV-4a mpRCT

	Therapeutic anticoagulation N=1,180	Usual care venous thromboprophylaxis N=1,046
Venous thrombotic events	16 (1.4%)	26 (2.5%) MEDENOX trial 5.5%
Major bleeding	22 (1.9%)	9 (0.9%)
		MEDENOX trial 2.0%

More questions than answers

Intervention	Population	Mortality RRR (%)
Dexamethasone ¹	6,425 patients hospitalised with COVID-19	17
Remdesivir ²	1,062 patients hospitalised with COVID-19	25
Tocilizumab ³	389 patients hospitalised with COVID-19 who were not receiving mechanical ventilation	21
Full-dose anticoagulation ⁴	1,398 moderate patients with COVID-19	25

Anticoagulation as a treatment for COVID-19

We also need confirmatory data

Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia¹

COVACTA study

Double-blind, placebo-controlled trial Negative for mortality

ORIGINAL ARTICLE

Interluekin-6 Receptor Antagonists in Critically III
Patients with Covid-19²

REMAP-CAP study

Open-label trial Positive for mortality

Anticoagulation as a treatment for COVID-19

Methodological issues with multiplatform trials

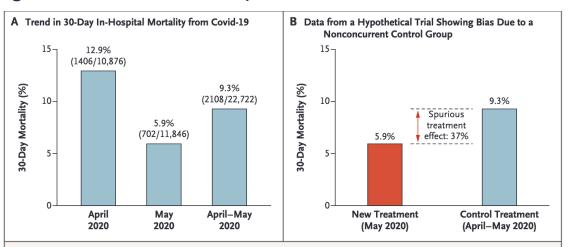


Figure 1. Hypothetical Example of How Nonconcurrent Randomization Could Bias the Results of a Trial.

Panel A shows the 30-day in-hospital mortality from Covid-19 in April 2020 (12.9% [SE, 0.3]), in May 2020 (5.9% [SE, 0.2]), and over both months (9.3 [SE, 0.2]) (data are from eFig. 2B in Asch et al.2). Panel B shows the data from a hypothetical trial for an ineffective new agent used in May 2020 as compared with a control treatment used in April and May 2020. The data show that mortality was lower by 37% with the ineffective new agent than with the control treatment.

Conclusions

 I still use standard-dose thromboprophylaxis for the vast majority of patients hospitalised with COVID-19

 Peer-reviewed data from RCTs will dictate whether anticoagulation is a treatment for COVID-19, and hopefully will identify patient subgroups who benefit most from this therapy

